Wednesday, February 12, 2014


The planet Mercury distance from the Sun at Perihelion 28583820mi and at Aphelion  43382210mi
It take just about 88 days for it to orbit the Sun.

File:Mercury Globe-MESSENGER mosaic centered at 0degN-0degE.jpg

Mercury is gravitationally locked and rotates in a way that is unique in the Solar System. As seen relative to the fixed stars, it rotates exactly three times for every two revolutions it makes around its orbit. As seen from the Sun, in a frame of reference that rotates with the orbital motion, it appears to rotate only once every two Mercurian years. An observer on Mercury would therefore see only one day every two years. Because  of it hard to get a space probe to Mercury because of the speed,to get the speed of the space probe fast enough to reach Mercury but  you would need a rocket to go into orbit which would add weight making it impossible to launch the space probe. There for you need to do a few flyby of Venus and a few of Mercury to slow the space probe down and for it to go into orbit around Mercury.
 Mercury was visited by 2 space probes one was called  Mariner 10 the first space probe to use gravitational "slingshot"  it was also the 1st probe to visit 2 planet,first was Venus and than 3 flyby of Mercury. Mariner 10 provided the first close-up images of Mercury's surface, which immediately showed its heavily cratered nature, and revealed many other types of geological features, such as the giant scarps which were later ascribed to the effect of the planet shrinking slightly as its iron core cools. Unfortunately, due to the length of Mariner 10's orbital period, the same face of the planet was lit at each of Mariner 10's close approaches. This made observation of both sides of the planet impossible,and resulted in the mapping of less than 45% of the planet's surface

File:Mariner 10.jpg

On March 27, 1974, two days before its first flyby of Mercury, Mariner 10's instruments began registering large amounts of unexpected ultraviolet radiation near Mercury. This led to the tentative identification of Mercury's moon. Shortly afterward, the source of the excess UV was identified as the star 31 Crateris, and Mercury's moon passed into astronomy's history books as a footnote.
The spacecraft made three close approaches to Mercury, the closest of which took it to within 327 km of the surface. At the first close approach, instruments detected a magnetic field, to the great surprise of planetary geologists—Mercury's rotation was expected to be much too slow to generate a significant dynamo effect. The second close approach was primarily used for imaging, but at the third approach, extensive magnetic data were obtained. The data revealed that the planet's magnetic field is much like the Earth's, which deflects the solar wind around the planet. The origin of Mercury's magnetic field is still the subject of several competing theories.
On March 24, 1975, just eight days after its final close approach, Mariner 10 ran out of fuel. Because its orbit could no longer be accurately controlled, mission controllers instructed the probe to shut down. Mariner 10 is thought to be still orbiting the Sun, passing close to Mercury every few months.
The next space probe is called Messenger( MErcury Surface, Space ENvironment, GEochemistry, and Ranging)
 File:MESSENGER - spacecraft at mercury - atmercury lg.jpg
 A second NASA mission to Mercury, named MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging), was launched on August 3, 2004, from the Cape Canaveral Air Force Station aboard a Boeing Delta 2 rocket. It made a fly-by of the Earth in August 2005, and of Venus in October 2006 and June 2007 to place it onto the correct trajectory to reach an orbit around Mercury. A first fly-by of Mercury occurred on January 14, 2008, a second on October 6, 2008, and a third on September 29, 2009. Most of the hemisphere not imaged by Mariner 10 has been mapped during these fly-bys. The probe successfully entered an elliptical orbit around the planet on March 18, 2011. The first orbital image of Mercury was obtained on March 29, 2011. The probe finished a one-year mapping mission,and then entered a one-year extended mission into 2013. In addition to continued observations and mapping of Mercury, MESSENGER observed the 2012 solar maximum.
The mission is designed to clear up six key issues: Mercury's high density, its geological history, the nature of its magnetic field, the structure of its core, whether it has ice at its poles, and where its tenuous atmosphere comes from. To this end, the probe is carrying imaging devices which will gather much higher resolution images of much more of the planet than Mariner 10, assorted spectrometers to determine abundances of elements in the crust, and magnetometers and devices to measure velocities of charged particles. Detailed measurements of tiny changes in the probe's velocity as it orbits will be used to infer details of the planet's interior structure.
In November 2011, NASA announced that the MESSENGER mission would be extended by one year, allowing the spacecraft to observe the 2012 solar maximum. Its extended mission began on March 17, 2012, and continued until March 17, 2013. Between April 16 and April 20, 2012, MESSENGER carried out a series of thruster manoeuvres, placing it in an eight-hour orbit to conduct further scans of Mercury.
In November 2012, NASA reported that MESSENGER had discovered both water ice and organic compounds in permanently shadowed craters in Mercury's north pole. In February 2013, NASA published the most detailed and accurate 3D map of Mercury to date, assembled from thousands of images taken by MESSENGER. MESSENGER completed its extended mission on March 17, 2013, and is now awaiting approval for a second mission extension.In November 2013, MESSENGER imaged both Comet Encke (2P/Encke) and Comet ISON (C/2012 S1).A fleet of space assets collected data on Comet ISON.

Mercury's surface is very similar in appearance to that of the Moon, showing extensive mare-like plains and heavy cratering, indicating that it has been geologically inactive for billions of years. Because our knowledge of Mercury's geology has been based on the 1975 Mariner flyby and terrestrial observations, it is the least understood of the terrestrial planets. As data from the recent MESSENGER flyby is processed this knowledge will increase. For example, an unusual crater with radiating troughs has been discovered that scientists called "the spider". It later received the name Apollodorus.
Albedo features are areas of markedly different reflectivity, as seen by telescopic observation. Mercury possesses dorsa (also called "wrinkle-ridges"), Moon-like highlands, montes (mountains), planitiae (plains), rupes (escarpments), and valles (valleys).
Names for features on Mercury come from a variety of sources. Names coming from people are limited to the deceased. Craters are named for artists, musicians, painters, and authors who have made outstanding or fundamental contributions to their field. Ridges, or dorsa, are named for scientists who have contributed to the study of Mercury. Depressions or fossae are named for works of architecture. Montes are named for the word "hot" in a variety of languages. Plains or planitiae are named for Mercury in various languages. Escarpments or rup─ôs are named for ships of scientific expeditions. Valleys or valles are named for radio telescope facilities.
Mercury was heavily bombarded by comets and asteroids during and shortly following its formation 4.6 billion years ago, as well as during a possibly separate subsequent episode called the late heavy bombardment that came to an end 3.8 billion years ago. During this period of intense crater formation, the planet received impacts over its entire surface,facilitated by the lack of any atmosphere to slow impactors down. During this time the planet was volcanically active; basins such as the Caloris Basin were filled by magma, producing smooth plains similar to the maria found on the Moon.
Data from the October 2008 flyby of MESSENGER gave researchers a greater appreciation for the jumbled nature of Mercury's surface. Mercury's surface is more heterogeneous than either Mars or the Moon, both of which contain significant stretches of similar geology, such as maria and plateaus. 
Craters on Mercury range in diameter from small bowl-shaped cavities to multi-ringed impact basins hundreds of kilometers across. They appear in all states of degradation, from relatively fresh rayed craters to highly degraded crater remnants. Mercurian craters differ subtly from lunar craters in that the area blanketed by their ejecta is much smaller, a consequence of Mercury's stronger surface gravity. According to IAU rules, each new crater must be named after an artist that was famous for more than fifty years, and dead for more than three years, before the date the crater is named.
The largest known crater is Caloris Basin, with a diameter of 1,550 km. The impact that created the Caloris Basin was so powerful that it caused lava eruptions and left a concentric ring over 2 km tall surrounding the impact crater. At the antipode of the Caloris Basin is a large region of unusual, hilly terrain known as the "Weird Terrain". One hypothesis for its origin is that shock waves generated during the Caloris impact traveled around the planet, converging at the basin's antipode (180 degrees away). The resulting high stresses fractured the surface. Alternatively, it has been suggested that this terrain formed as a result of the convergence of ejecta at this basin's antipode.Overall, about 15 impact basins have been identified on the imaged part of Mercury. A notable basin is the 400 km wide, multi-ring Tolstoj Basin that has an ejecta blanket extending up to 500 km from its rim and a floor that has been filled by smooth plains materials. Beethoven Basin has a similar-sized ejecta blanket and a 625 km diameter rim. Like the Moon, the surface of Mercury has likely incurred the effects of space weathering processes, including Solar wind and micrometeorite impacts.
There are two geologically distinct plains regions on Mercury. Gently rolling, hilly plains in the regions between craters are Mercury's oldest visible surfaces, predating the heavily cratered terrain. These inter-crater plains appear to have obliterated many earlier craters, and show a general paucity of smaller craters below about 30 km in diameter. It is not clear whether they are of volcanic or impact origin.The inter-crater plains are distributed roughly uniformly over the entire surface of the planet.
Smooth plains are widespread flat areas that fill depressions of various sizes and bear a strong resemblance to the lunar maria. Notably, they fill a wide ring surrounding the Caloris Basin. Unlike lunar maria, the smooth plains of Mercury have the same albedo as the older inter-crater plains. Despite a lack of unequivocally volcanic characteristics, the localization and rounded, lobate shape of these plains strongly support volcanic origins.All the Mercurian smooth plains formed significantly later than the Caloris basin, as evidenced by appreciably smaller crater densities than on the Caloris ejecta blanket. The floor of the Caloris Basin is filled by a geologically distinct flat plain, broken up by ridges and fractures in a roughly polygonal pattern. It is not clear whether they are volcanic lavas induced by the impact, or a large sheet of impact melt.
One unusual feature of the planet's surface is the numerous compression folds, or rupes, that crisscross the plains. As the planet's interior cooled, it may have contracted and its surface began to deform, creating these features. The folds can be seen on top of other features, such as craters and smoother plains, indicating that the folds are more recent. Mercury's surface is flexed by significant tidal bulges raised by the Sun—the Sun's tides on Mercury are about 17 times stronger than the Moon's on Earth. Exosphere of Mercury
Mercury is too small and hot for its gravity to retain any significant atmosphere over long periods of time; it does have a "tenuous surface-bounded exosphere" containing hydrogen, helium, oxygen, sodium, calcium, potassium and others. This exosphere is not stable—atoms are continuously lost and replenished from a variety of sources. Hydrogen and helium atoms probably come from the solar wind, diffusing into Mercury's magnetosphere before later escaping back into space. Radioactive decay of elements within Mercury's crust is another source of helium, as well as sodium and potassium. MESSENGER found high proportions of calcium, helium, hydroxide, magnesium, oxygen, potassium, silicon and sodium. Water vapor is present, released by a combination of processes such as: comets striking its surface, sputtering creating water out of hydrogen from the solar wind and oxygen from rock, and sublimation from reservoirs of water ice in the permanently shadowed polar craters. The detection of high amounts of water-related ions like O+, OH, and H2O+ was a surprise. Because of the quantities of these ions that were detected in Mercury's space environment, scientists surmise that these molecules were blasted from the surface or exosphere by the solar wind.
Sodium, potassium and calcium were discovered in the atmosphere during the 1980–1990s, and are believed to result primarily from the vaporization of surface rock struck by micrometeorite impacts.]In 2008 magnesium was discovered by MESSENGER probe.Studies indicate that, at times, sodium emissions are localized at points that correspond to the planet's magnetic poles. This would indicate an interaction between the magnetosphere and the planet's surface.
On November 29, 2012, NASA confirmed that images from MESSENGER had detected that craters at the north pole contained water ice. Sean C. Solomon was quoted in the New York Times as estimating the volume of the ice as large enough to "encase Washington, D.C., in a frozen block two and a half miles deep. Mercury has a significant, and apparently global, magnetic field. According to measurements taken by Mariner 10, it is about 1.1% as strong as the Earth's.Unlike Earth, Mercury's poles are nearly aligned with the planet's spin axis.Measurements from both the Mariner 10 and MESSENGER space probes have indicated that the strength and shape of the magnetic field are stable.
It is likely that this magnetic field is generated by way of a dynamo effect, in a manner similar to the magnetic field of Earth.This dynamo effect would result from the circulation of the planet's iron-rich liquid core. Particularly strong tidal effects caused by the planet's high orbital eccentricity would serve to keep the core in the liquid state necessary for this dynamo effect.
Mercury's magnetic field is strong enough to deflect the solar wind around the planet, creating a magnetosphere. The planet's magnetosphere, though small enough to fit within the Earth, is strong enough to trap solar wind plasma. This contributes to the space weathering of the planet's surface.Observations taken by the Mariner 10 spacecraft detected this low energy plasma in the magnetosphere of the planet's nightside. Bursts of energetic particles were detected in the planet's magnetotail, which indicates a dynamic quality to the planet's magnetosphere.
During its second flyby of the planet on October 6, 2008, MESSENGER discovered that Mercury's magnetic field can be extremely "leaky". The spacecraft encountered magnetic "tornadoes" – twisted bundles of magnetic fields connecting the planetary magnetic field to interplanetary space – that were up to 800 km wide or a third of the radius of the planet. These "tornadoes" form when magnetic fields carried by the solar wind connect to Mercury's magnetic field. As the solar wind blows past Mercury's field, these joined magnetic fields are carried with it and twist up into vortex-like structures. These twisted magnetic flux tubes, technically known as flux transfer events, form open windows in the planet's magnetic shield through which the solar wind may enter and directly impact Mercury's surface.
The process of linking interplanetary and planetary magnetic fields, called magnetic reconnection, is common throughout the cosmos. It occurs in Earth's magnetic field, where it generates magnetic tornadoes as well. The MESSENGER observations show the reconnection rate is ten times higher at Mercury. Mercury's proximity to the Sun only accounts for about a third of the reconnection rate observed by MESSENGER.