Tuesday, January 21, 2014

Enceladus

Moon of Saturn
[image]
Enceladus is the sixth-largest of the moons of Saturn. It was discovered in 1789 by William Herschel. Enceladus seems to have liquid water under its icy surface. Cryovolcanoes at the south pole shoot large jets of water vapor, other volatiles and some solid particles (ice crystal, NaCl etc) into space . Some of this water falls back onto the moon as "snow", some of it adds to Saturn's rings, and some of it reaches Saturn. The whole of Saturn's E ring is believed to have been made from these ice particles. Because of the apparent water at or near the surface, Enceladus may be one of the best places for humans to look for extraterrestrial life. By contrast, the water thought to be on Jupiter's moon Europa is locked under a very thick layer of surface ice.
Until the two Voyager spacecraft passed near it in the early 1980s very little was known about this small moon besides the identification of water ice on its surface. The Voyagers showed that the diameter of Enceladus is only 310 mi), about a tenth of that of Saturn's largest moon, Titan, and that it reflects almost all of the sunlight that strikes it. Voyager 1 found that Enceladus orbited in the densest part of Saturn's diffuse E ring, indicating a possible association between the two, while Voyager 2 revealed that despite the moon's small size, it had a wide range of terrains ranging from old, heavily cratered surfaces to young, tectonically deformed terrain, with some regions with surface ages as young as 100 million years old.
In 2005 the Cassini spacecraft performed several close flybys of Enceladus, revealing the moon's surface and environment in greater detail. In particular, the probe discovered a water-rich plume venting from the moon's south polar region. This discovery, along with the presence of escaping internal heat and very few (if any) impact craters in the south polar region, shows that Enceladus is geologically active today. Moons in the extensive satellite systems of gas giants often become trapped in orbital resonances that lead to forced libration or orbital eccentricity; proximity to Saturn can then lead to tidal heating of Enceladus's interior, offering a possible explanation for the activity.
Exploration
[image]
Size comparison of Earth and Enceladus,if you compare it to Saturn you wouldn't be able to see it,the dot would be so small
Enceladus was discovered by Fredrick William Herschel on August 28, 1789, during the first use of his new 1.2 m telescope, then the largest in the world. Herschel first observed Enceladus in 1787, but in his smaller, 16.5 cm telescope, the moon was not recognized.Its faint apparent magnitude (+11.7m) and its proximity to much brighter Saturn and its rings make Enceladus difficult to observe from Earth, requiring a telescope with a mirror of 15–30 cm in diameter, depending on atmospherical conditions and light pollution. Like many Saturnian satellites discovered prior to the Space Age, Enceladus was first observed during a Saturnian equinox, when Earth is within the ring plane; at such times, the reduction in glare from the rings makes the moons easier to observe.
[image]
(Dramatic plumes, both large and small, spray water ice out from many locations along the famed "tiger stripes" near the south pole of Saturn's moon Enceladus. From right to left, the four major stripes are Damascus, Baghdad, Cairo and Alexandria sulci.)
Prior to the Voyager missions the view of Enceladus improved little from the dot first observed by Herschel. Only its orbital characteristics were known, with estimations of its mass, density and albedo.
The two Voyager spacecraft obtained the first close-up images of Enceladus. Voyager 1 was the first to fly past Enceladus, at a distance of 202,000 km on November 12, 1980. Images acquired from this distance had very poor spatial resolution, but revealed a highly reflective surface devoid of impact craters, indicating a youthful surface.Voyager 1 also confirmed that Enceladus was embedded in the densest part of Saturn's diffuse E-ring. Combined with the apparent youthful appearance of the surface, Voyager scientists suggested that the E-ring consisted of particles vented from Enceladus's surface.
Dramatic plumes, both large and small, spray water ice out from many locations along the famed "tiger stripes" near the south pole of Saturn's moon Enceladus. From right to left, the four major stripes are Damascus, Baghdad, Cairo and Alexandria sulci.
Voyager 2 passed closer to Enceladus (87,010 km) on August 26, 1981, allowing much higher-resolution images of this satellite.[25] These images revealed the youthful nature of much of its surface, They also revealed a surface with different regions with vastly different surface ages, with a heavily cratered mid- to high-northern latitude region, and a lightly cratered region closer to the equator. This geologic diversity contrasts with the ancient, heavily cratered surface of Mimas, another moon of Saturn slightly smaller than Enceladus. The geologically youthful terrains came as a great surprise to the scientific community, because no theory was then able to predict that such a small (and cold, compared to Jupiter's highly active moon Io) celestial body could bear signs of such activity. However, Voyager 2 failed to determine whether Enceladus was currently active or whether it was the source of the E-ring.
[image]
The answer to these and other mysteries had to wait until the arrival of the Cassini spacecraft on July 1, 2004, when it went into orbit around Saturn. Given the results from the Voyager 2 images, Enceladus was considered a priority target by the Cassini mission planners, and several targeted flybys within 1,500 km of the surface were planned as well as numerous, "non-targeted" opportunities within 100,000 km of Enceladus. The flybys have yielded significant information concerning Enceladus's surface, as well as the discovery of water vapor and complex hydrocarbons venting from the geologically active South Polar Region. These discoveries prompted the adjustment of Cassini's flight plan to allow closer flybys of Enceladus, including an encounter in March 2008 which took the probe to within 52 km of the moon's surface.The extended mission for Cassini included seven close flybys of Enceladus between July 2008 and July 2010, including two passes at only 50 km in the later half of 2008.
The discoveries Cassini has made at Enceladus have prompted several studies into follow-up missions. In 2007 NASA performed a concept study for a mission that would orbit Enceladus and would perform a detailed examination of the south polar plumes.The concept was not selected for further study.The European Space Agency also recently explored plans to send a probe to Enceladus in a mission to be combined with studies of Titan.
The Titan Saturn System Mission (TSSM) is a joint NASA/ESA proposal for exploration of Saturn's moons, including Enceladus. TSSM was competing against the Europa Jupiter System Mission (EJSM) proposal for funding. In February 2009 it was announced that ESA/NASA had given the EJSM mission priority ahead of TSSM,although TSSM will continue to be studied for a later launch date.
[image]
Size and shape
Enceladus is a relatively small moon, with a mean diameter of 314 mi), only one-seventh the diameter of Earth's own Moon.
Its mass and diameter make Enceladus the sixth most massive and largest satellite of Saturn, after Titan (5150 km), Rhea (1530 km), Iapetus (1440 km), Dione (1120 km) and Tethys (1050 km). It is also one of the smallest of Saturn's spherical satellites, since all smaller satellites except Mimas (390 km) have an irregular shape.
Enceladus is a scalene ellipsoid in shape; its diameters, calculated from pictures taken by Cassini's ISS (Imaging Science Subsystem) instrument, are 513 km between the sub- and anti-Saturnian poles, 503 km between the leading and trailing poles, and 497 km between the north and south poles. This is the most stable orientation, with the moon's rotation along the short axis, and the long axis aligned radially away from Saturn.
Surface
[image]
[image]
A very young face for a very small moon.
 Voyager 2, in August 1981, was the first spacecraft to observe the surface in detail. Examination of the resulting highest-resolution mosaic reveals at least five different types of terrain, including several regions of cratered terrain, regions of smooth (young) terrain, and lanes of ridged terrain often bordering the smooth areas. In addition, extensive linear cracks and scarps were observed. Given the relative lack of craters on the smooth plains, these regions are probably less than a few hundred million years old. Accordingly, Enceladus must have been recently active with "water volcanism" or other processes that renew the surface. The fresh, clean ice that dominates its surface gives Enceladus probably the most reflective surface of any body in the Solar System with a visual geometric albedo of 1.38. Because it reflects so much sunlight, the mean surface temperature at noon only reaches −198 °C (somewhat colder than other Saturnian satellites).
Observations during three flybys by Cassini on February 17, March 9, and July 14 of 2005 revealed Enceladus's surface features in much greater detail than the Voyager 2 observations. For example, the smooth plains observed by Voyager 2 resolved into relatively crater-free regions filled with numerous small ridges and scarps. In addition, numerous fractures were found within the older, cratered terrain, suggesting that the surface has been subjected to extensive deformation since the craters were formed.Finally, several additional regions of young terrain were discovered in areas not well-imaged by either Voyager spacecraft, such as the bizarre terrain near the south pole.
Impact craters
Impact cratering is a common occurrence on many Solar System bodies. Much of Enceladus's surface is covered with craters at various densities and levels of degradation. From Voyager 2 observations, three different units of cratered topography were identified on the basis of their crater densities, from ct1 and ct2, both containing numerous 10–20 km-wide craters though differing in the degree of deformation, to cp consisting of lightly cratered plains.This subdivision of cratered terrains on the basis of crater density (and thus surface age) suggests that Enceladus has been resurfaced in multiple stages.
Recent Cassini observations have provided a much closer look at the ct2 and cp cratered units. These high-resolution observations, reveal that many of Enceladus's craters are heavily deformed through viscous relaxation and fracturing. Viscous relaxation allows gravity, over geologic time scales, to deform craters and other topographic features formed in water ice, reducing the amount of topography over time. The rate at which this occurs is dependent on the temperature of the ice: warmer ice is easier to deform than colder, stiffer ice. Viscously relaxed craters tend to have domed floors, or are recognized as craters only by a raised, circular rim . Dunyazad, the large crater seen in Figure 8 just left of top center, is a prime example of a viscously relaxed crater on Enceladus, with a prominent domed floor. In addition, many craters on Enceladus have been heavily modified by tectonic fractures. The 10-km-wide crater right of bottom center in Figure 8 is a prime example: thin fractures, several hundred meters to a kilometer wide, have heavily altered the crater's rim and floor. Nearly all craters on Enceladus thus far imaged by Cassini in the ct2 unit show signs of tectonic deformation.
[image]
Tectonics
Voyager 2 found several types of tectonic features on Enceladus, including troughs, scarps, and belts of grooves and ridges.Recent results from Cassini suggest that tectonism is the dominant deformation style on Enceladus. One of the more dramatic types of tectonic features found on Enceladus are rifts. These canyons can be up to 200 km long, 5–10 km wide, and one km deep. Figure 7 Below shows a typical large fracture on Enceladus cutting across older, tectonically deformed terrain. Another example can be seen running along the bottom of the frame in Figure 8. Such features appear relatively young, as they cut across other tectonic features and have sharp topographic relief with prominent outcrops along the cliff faces.
[image]
Another evidence of tectonism on Enceladus is grooved terrain, consisting of lanes of curvilinear grooves and ridges. These bands, first discovered by Voyager 2, often separate smooth plains from cratered regions.An example of this terrain type can be seen in 10 (in this case, a feature known as the Samarkand Sulci). Grooved terrains such as the Samarkand Sulci are reminiscent of grooved terrain on Ganymede. However, unlike those seen on Ganymede, grooved topography on Enceladus is generally much more complex. Rather than parallel sets of grooves, these lanes can often appear as bands of crudely aligned, chevron-shaped features. In other areas, these bands appear to bow upwards with fractures and ridges running the length of the feature. Cassini observations of the Samarkand Sulci have revealed intriguing dark spots (125 and 750 m wide), which appear to run parallel to narrow fractures. Currently, these spots are interpreted as collapse pits within these ridged plain belts.
[image]
Atmosphere
The first Cassini flybys of Enceladus revealed that it has a significant atmosphere compared to the other moons of Saturn besides Titan. The source of the atmosphere may be volcanism, geysers, or gasses escaping from the surface or the interior.The atmosphere of Enceladus is composed of 91% water vapor, 4% nitrogen, 3.2% carbon dioxide, and 1.7% methane.

Cryovolcanism
[image]
[image]
(Figure 13: Heat map (within white box) of the thermally active field of fractures, measured at wavelengths between 12 and 16 micrometers, superimposed on a visual-light image. One of the four fractures (right) was only partially imaged.)
Following the Voyager encounters with Enceladus in the early 1980s, scientists postulated that the moon may be geologically active based on its young, reflective surface and location near the core of the E ring. Based on the connection between Enceladus and the E ring, it was thought that Enceladus was the source of material in the E ring, perhaps through venting of water vapor from Enceladus's interior. However, the Voyagers failed to provide conclusive evidence that Enceladus is active today.
Thanks to data from a number of instruments on the Cassini spacecraft in 2005, cryovolcanism, where water and other volatiles are the materials erupted instead of silicate rock, has been discovered on Enceladus. The first Cassini sighting of a plume of icy particles above Enceladus's south pole came from the Imaging Science Subsystem (ISS) images taken in January and February 2005,though the possibility of the plume being a camera artifact stalled an official announcement. Data from the magnetometer instrument during the February 17, 2005 encounter provided a hint that the feature might be real when it found evidence for an atmosphere at Enceladus. The magnetometer observed an increase in the power of ion cyclotron waves near Enceladus. These waves are produced by the interaction of ionized particles and magnetic fields, and the frequency of the waves can be used to identify the composition, in this case ionized water vapor.During the next two encounters, the magnetometer team determined that gases in Enceladus's atmosphere are concentrated over the south polar region, with atmospheric density away from the pole being much lower.The Ultraviolet Imaging Spectrograph (UVIS) confirmed this result by observing two stellar occultations during the February 17 and July 14 encounters. Unlike the magnetometer, UVIS failed to detect an atmosphere above Enceladus during the February encounter when it looked for evidence for an atmosphere over the equatorial region, but did detect water vapor during an occultation over the south polar region during the July encounter.
Fortuitously, Cassini flew through this gas cloud during the July 14 encounter, allowing instruments like the ion and neutral mass spectrometer (INMS) and the cosmic dust analyzer (CDA) to directly sample the plume. INMS measured the composition of the gas cloud, detecting mostly water vapor, as well as minor components like molecular nitrogen, methane, and carbon dioxide. CDA "detected a large increase in the number of particles near Enceladus", confirming Enceladus as the primary source for the E ring. Analysis of the CDA and INMS data suggest that the gas cloud Cassini flew through during the July encounter, and observed from a distance with its magnetometer and UVIS, was actually a water-rich cryovolcanic plume, originating from vents near the south pole.
Visual confirmation of venting came in November 2005, when ISS (Imaging Science Subsystem) imaged geyser-like jets of icy particles rising from the moon's south polar region.(As stated above, the plume was imaged before, in January and February 2005, but additional studies of the camera's response at high phase angles, when the Sun is almost behind Enceladus, and comparison with equivalent high-phase-angle images taken of other Saturnian satellites, were required before this could be confirmed.The images taken in November 2005 showed the plume's fine structure, revealing numerous jets (perhaps issuing from numerous distinct vents) within a larger, faint component extending out nearly 500 km from the surface, thus making Enceladus the fourth body in the Solar System to have confirmed volcanic activity, along with Earth, Neptune's Triton, and Jupiter's Io.Cassini's UVIS later observed gas jets coinciding with the dust jets seen by ISS during a non-targeted encounter with Enceladus in October 2007.
Additional observations were acquired during a flyby on March 12, 2008. Data on this flyby revealed additional chemicals in the plume, including simple and complex hydrocarbons such as propane, ethane, and acetylene.This finding further raises the potential for life beneath the surface of Enceladus.The composition of Enceladus's plume as measured by the INMS instrument on Cassini is similar to that seen at most comets.
The intensity of the eruption of the south polar jets varies significantly as a function of the position of Enceladus in its orbit. The plumes are about four times brighter when Enceladus is at apoapsis (the point in its orbit most distant from Saturn) than when it is at periapsis. Geophysical modeling of tidal stresses indicates that at apoapsis the Tiger Stripes region is in a state of maximum tension, which would tend to open the fissures, while compression is maximal at periapsis.
[image]
Ammonia discovery
In July 2009 it was announced that ammonia had been discovered during flybys in July and October 2008. This acts like anti-freeze this will allow the water under the surface freezing temp to be increased
Internal structure
[image]
Prior to the Cassini mission, relatively little was known about the interior of Enceladus. However, results from recent flybys of Enceladus by the Cassini spacecraft have provided much needed information for models of Enceladus's interior. These include a better determination of the mass and tri-axial ellipsoid shape, high-resolution observations of the surface, and new insights on Enceladus's geochemistry.
Mass estimates from the Voyager program missions suggested that Enceladus was composed almost entirely of water ice.However, based on the effects of Enceladus's gravity on Cassini, its mass was determined to be much higher than previously thought, yielding a density of 1.61 g/cm³. This density is higher than Saturn's other mid-sized icy satellites, indicating that Enceladus contains a greater percentage of silicates and iron. With additional material besides water ice, Enceladus's interior may have experienced comparatively more heating from the decay of radioactive elements.
Castillo et al. 2005 suggested that Iapetus, and the other icy satellites of Saturn, formed relatively quickly after the formation of the Saturnian subnebula, and thus were rich in short-lived radionuclides. These radionuclides, like aluminium-26 and iron-60, have short half-lives and would produce interior heating relatively quickly. Without the short-lived variety, Enceladus's complement of long-lived radionuclides would not have been enough to prevent rapid freezing of the interior, even with Enceladus's comparatively high rock–mass fraction, given Enceladus's small size. Given Enceladus's relatively high rock–mass fraction, the proposed enhancement in 26Al and 60Fe would result in a differentiated body, with an icy mantle and a rocky core. Subsequent radioactive and tidal heating would raise the temperature of the core to 1000 K, enough to melt the inner mantle. However, for Enceladus to still be active, part of the core must have melted too, forming magma chambers that would flex under the strain of Saturn's tides. Tidal heating, such as from the resonance with Dione or from libration, would then have sustained these hot spots in the core until the present, and would power the current geological activity.
In addition to its mass and modeled geochemistry, researchers have also examined Enceladus's shape to test whether it is differentiated or not. Porco et al. 2006 used limb measurements to determine that Enceladus's shape, assuming it is in hydrostatic equilibrium, is consistent with an undifferentiated interior, in contradiction to the geological and geochemical evidence.However, the current shape also supports the possibility that Enceladus is not in hydrostatic equilibrium, and may have rotated faster at some point in the recent past (with a differentiated interior).

Possible water ocean
In late 2008, scientists observed water vapor spewing from Enceladus's surface, and it was later discovered that this vapor trails into Saturn. This could indicate the presence of liquid water, which might also make it possible for Enceladus to support life. Candice Hansen, a scientist with NASA's Jet Propulsion Lab, headed up a research team on the plumes after they were found to be moving at1,360 miles per hour). Since that speed is difficult to attain unless liquids are involved, they decided to investigate the compositions of the plumes.
Eventually it was discovered that in the E-ring about 6% of particles contain 0.5–2% of sodium salts by mass, which is a significant amount. In the parts of the plume close to Enceladus the fraction of "salty" particles increases to 70% by number and >99% by mass. Such particles presumably are frozen spray from the salty underground ocean. On the other hand, the small salt-poor particles form by homogenous nucleation directly from the gas phase. The sources of salty particles are uniformly distributed along the tiger stripes, whereas sources of "fresh" particles are closely related to the high-speed gas jets. The "salty" particles move slowly and mostly fall back onto the surface, while the fast "fresh" particles escape to the E-ring, explaining its salt-poor composition.
The "salty" composition of the plume strongly suggests that its source is a subsurface salty ocean or subsurface caverns filled with salty water. Alternatives such as the clathrate sublimation hypothesis can not explain how "salty" particles form.Additionally, Cassini found traces of organic compounds in some dust grains. Enceladus is therefore a candidate for harboring extraterrestrial life.
The presence of liquid water under the crust implies that there is an internal heat source. It is now thought to be a combination of radioactive decay and tidal heating, as tidal heating alone is not sufficient to explain the heat.
I wish we could send a probe into every one of these moon with water under their surface, But we must be careful not to place life there from the Earth. This why when Cassini is done. Its orbit would be aim at Saturn this away it wouldn't land on this or Titan . The orbiter wasn't clean .well it wasn't clean to get rid of any thing a life on its surface. Before the probe if its going to be send into this moon sea,would be clean up extra careful. Did you know that a bug on a landed we send to the moon was still alive when they took the leg back to Earth( Surveyor 3)

No comments:

Post a Comment