
This art photo show how the solar cell will be during the close approach
Trajectory and mission
Early conceptual designs for the Solar Probe mission used a gravity assist maneuver at Jupiter to cancel the orbital angular momentum of the probe launched from Earth, in order to drop onto a trajectory close to the Sun. The Solar Probe Plus mission design simplifies this trajectory by using multiple gravity assists at Venus, to incrementally decrease the orbital perihelion to achieve multiple passes to approximately 8.5 solar radii, or about 6,000,000 km (3,700,000 mi).
The mission is designed to survive the harsh environment near the Sun, where the incident solar intensity is approximately 520 times the intensity at Earth orbit, by the use of a solar shadow-shield. The solar shield, at the front of the spacecraft, is made of reinforced carbon-carbon composite. The spacecraft systems, and the scientific instruments, are located in the penumbra of the shield. The primary power for the mission will be by use of a dual system of photovoltaic arrays. A primary photovoltaic array, used for the portion of the mission outside of 0.25 AU, is retracted behind the shadow shield during the close approach to the Sun, and a much smaller secondary array powers the spacecraft through closest approach. This secondary array uses pumped-fluid cooling to maintain operating temperature.
As the probe passes around the Sun, it will achieve a velocity of up to 200 km/s (120 mi/s) at that time making it the fastest manmade object ever, almost three times faster than the current record holder, Helios II.
![[image]](http://www.adsworld.us/images/uploaded/2013121905215552b282735c959.jpg)
No comments:
Post a Comment